手撕红黑树

目录

运维DBA

一、概念

图像生成

二、红黑树的插入操作

机顶盒ROM

第一步: 按照二叉搜索树的规则插入新节点

spring

第二步: 插入后检测性质是否造到破坏,若遭到破坏则进行调整

数字可视化

情况一: cur为红,parent为红,grandfather为黑,uncle存在且为红

USART

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(单旋+变色)

方法重载

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋+变色)

场景跳转

三、红黑树的验证

实战演练项目

检测其是否满足二叉搜索树

swiftui

检测其是否满足红黑树的性质

线性回归

四、完整代码

ERC 1155

五、红黑树与AVL树的比较

速度闭环控制


一、概念

红黑树,是一种二叉搜索树。但在每个结点上增加一个存储位表示结点的颜色,可以是Red或
Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出两倍,因而是接近平衡的。

svn

性质:
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 若一个节点是红色的,则它的两个孩子结点是黑色的(即树中没有连续的红色结点)
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(即每条路径上黑色结点数量相等)
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点NIF)

msp430

稀疏学习

return的作用

爬虫学习

二、红黑树的插入操作

红黑树的插入操作大致可以分成两步:

装箱和拆箱

第一步: 按照二叉搜索树的规则插入新节点

bool insert(const pair<K, V>& kv) {
		if (_root == nullptr) {
			_root = new TreeNode(kv);
			_root->_color = BLACK;
			return true;
		}

		TreeNode* parent = nullptr;
		TreeNode* cur = _root;
		while (cur != nullptr) {
			if (kv.first > cur->_data.first) {
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_data.first) {
				parent = cur;
				cur = cur->_left;
			}
			else return false;
		}
		cur = new TreeNode(kv);
		cur->_color = RED;
		if (kv.first > parent->_data.first) {
			parent->_right = cur;
		}
		else { //kv.first < parent->_data.first)
			parent->_left = cur;
		}
		cur->_parent = parent;

		//………………
	}

Ceph

第二步: 插入后检测性质是否造到破坏,若遭到破坏则进行调整

新节点的默认颜色是红色,若其双亲结点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入结点的双亲结点颜色为红色时,就出现了连续的红色结点,此时需要对红黑树分情况来讨论:

Coroutine

情况一: cur为红,parent为红,grandfather为黑,uncle存在且为红

Multi-Head Atte

if (uncle != nullptr && uncle->_color == RED) {
    parent->_color = uncle->_color = BLACK;
	grandfather->_color = RED;
	cur = grandfather;
	parent = cur->_parent;
}

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(单旋+变色)

uncle的情况有两种:

IO 分类

1.若uncle结点不存在时,cur结点一定是新增结点。若cur不是新增结点,则cur和parent之间一定有一个黑色结点。这不满足性质4:每条路径上黑色结点的个数相同。

IO流

2.若uncle存在且为黑色,那么cur原来的颜色一定为黑色。看到cur结点是红色,是因为cur的子树在调整的过程中将cur的颜色从黑色改变为红色。

Java反射机制

//右单旋 + 变色
if (cur == parent->_left) {
	rotate_right(grandfather);
	grandfather->_color = RED;
	parent->_color = BLACK;
}

//左单旋 + 变色
if (cur == parent->_right) {
	rotate_left(grandfather);
	grandfather->_color = RED;
	parent->_color = BLACK;
}

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋+变色)

//左右双旋 + 变色
else {//cur == parent->_right
	rotate_left(parent);
    rotate_right(grandfather);
	cur->_color = BLACK;
	grandfather->_color = RED;
}

//右左双旋 + 变色
else {//cur == parent->_left
	rotate_right(parent);
	rotate_left(grandfather);
	cur->_color = BLACK;
	grandfather->_color = RED;
}

三、红黑树的验证

红黑树的检测分为两步:

检测其是否满足二叉搜索树

使用中序遍历判断其是否有序即可,这里不做过多解释

检测其是否满足红黑树的性质

bool IsBalance() {
	//空树也是红黑树
	if (_root == nullptr) return true;

	//根结点是黑色的
	if (_root->_color != BLACK) return false;

	int benchmark = 0;//基准值
	return _IsBalance(_root, 0, benchmark);
}

bool _IsBalance(TreeNode* root, int blackNum, int& benchmark) {
	if (root == nullptr) {
		if (benchmark == 0) {
			benchmark = blackNum;//将第一条路径的blackNum设为基准值
	    	return true;
		}
		else {
			return blackNum == benchmark;
		}
	}
	if (root->_color == BLACK) ++blackNum;

	if (root->_color == RED && root->_parent->_color == RED) return false;
    //逻辑短路,若root结点为红色,其就不可能为根结点,一定有parent结点

	return _IsBalance(root->_left, blackNum, benchmark) && 
            _IsBalance(root->_right, blackNum, benchmark);
}

四、完整代码

#include<iostream>
#include<cassert>
using std::pair;
using std::make_pair;
using std::cout;
using std::cout;
using std::endl;

enum Color { RED,BLACK };
template<class K,class V>
struct RedBlackTreeNode {
	RedBlackTreeNode(const pair<K, V>& kv) :
        _parent(nullptr), 
        _left(nullptr), 
        _right(nullptr), 
        _data(kv),
        _color(RED){}

	RedBlackTreeNode<K, V>* _parent;
	RedBlackTreeNode<K, V>* _left;
	RedBlackTreeNode<K, V>* _right;
	pair<K, V> _data;
	Color _color;
};

template<class K,class V>
class RedBlackTree 
{
	typedef RedBlackTreeNode<K, V> TreeNode;
public:
	bool insert(const pair<K, V>& kv) {
		if (_root == nullptr) {
			_root = new TreeNode(kv);
			_root->_color = BLACK;
			return true;
		}

		TreeNode* parent = nullptr;
		TreeNode* cur = _root;
		while (cur != nullptr) {
			if (kv.first > cur->_data.first) {
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_data.first) {
				parent = cur;
				cur = cur->_left;
			}
			else return false;
		}
		cur = new TreeNode(kv);
		cur->_color = RED;
		if (kv.first > parent->_data.first) {
			parent->_right = cur;
		}
		else { //kv.first < parent->_data.first)
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_color == RED)
		{
			TreeNode* grandfather = parent->_parent;
			assert(grandfather != nullptr);
            //当parent结点为红时,grandfather结点必不为空(根结点为黑)
			assert(grandfather->_color == BLACK);
            //当parent结点为红时,grandfather结点必为黑色(否则违反性质,出现连续的红色结点)

			if (parent == grandfather->_left) {
				TreeNode* uncle = grandfather->_right;
				if (uncle != nullptr && uncle->_color == RED) {
					parent->_color = uncle->_color = BLACK;
					grandfather->_color = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else {//uncle不存在或者为黑
					//右单旋 + 变色
					if (cur == parent->_left) {
						rotate_right(grandfather);
						grandfather->_color = RED;
						parent->_color = BLACK;
					}
					//左右双旋 + 变色
					else {//cur == parent->_right
						rotate_left(parent);
						rotate_right(grandfather);
						cur->_color = BLACK;
						grandfather->_color = RED;
					}
					break;
				}
			}
			else {//parent == grandfather->_right
				TreeNode* uncle = grandfather->_left;
				if (uncle != nullptr && uncle->_color == RED) {
					parent->_color = uncle->_color = BLACK;
					grandfather->_color = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else {//uncle不存在或者为黑
					//左单旋 + 变色
					if (cur == parent->_right) {
						rotate_left(grandfather);
						grandfather->_color = RED;
						parent->_color = BLACK;
					}
					//右左双旋 + 变色
					else {//cur == parent->_left
						rotate_right(parent);
						rotate_left(grandfather);
						cur->_color = BLACK;
						grandfather->_color = RED;
					}
					break;
				}
			}
		}
		_root->_color = BLACK;
		return true;
	}

	void inorder() {
		_inorder(_root);
	}

	bool IsBalance() {
		//空树也是红黑树
		if (_root == nullptr) return true;

		//根结点是黑色的
		if (_root->_color != BLACK) return false;

		int benchmark = 0;//基准值
		return _IsBalance(_root, 0, benchmark);
	}
private:
	void _inorder(TreeNode* root) {
		if (root == nullptr) {
			return;
		}
		_inorder(root->_left);
		cout << root->_data.first << ":" << root->_data.second << " ";
		_inorder(root->_right);
	}

	bool _IsBalance(TreeNode* root, int blackNum, int& benchmark) {
		if (root == nullptr) {
			if (benchmark == 0) {
				benchmark = blackNum;
				return true;
			}
			else {
				return blackNum == benchmark;
			}
		}
		if (root->_color == BLACK) ++blackNum;

		if (root->_color == RED && root->_parent->_color == RED) return false;
        //逻辑短路,若root结点为红色,其就不可能为根结点,一定有parent结点

		return _IsBalance(root->_left, blackNum, benchmark) && 
                _IsBalance(root->_right, blackNum, benchmark);
	}

	void rotate_left(TreeNode* parent) {
		TreeNode* subR = parent->_right;
		TreeNode* subRL = subR->_left;
		TreeNode* pparent = parent->_parent;

		parent->_right = subRL;
		if (subRL != nullptr) subRL->_parent = parent;
		subR->_left = parent;
		parent->_parent = subR;

		//解决根结点变换带来的问题
		if (_root == parent) {
			_root = subR;
			subR->_parent = nullptr;
		}
		else {
			if (pparent->_left == parent) pparent->_left = subR;
			else pparent->_right = subR;
			subR->_parent = pparent;
		}
	}
	void rotate_right(TreeNode* parent) {
		TreeNode* subL = parent->_left;
		TreeNode* subLR = subL->_right;
		TreeNode* pparent = parent->_parent;

		parent->_left = subLR;
		if (subLR != nullptr) subLR->_parent = parent;
		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent) {
			_root = subL;
			subL->_parent = nullptr;
		}
		else {
			if (pparent->_left == parent) pparent->_left = subL;
			else pparent->_right = subL;
			subL->_parent = pparent;
		}
	}

private:
	TreeNode* _root = nullptr;
};

void RBTreeTest() {
	size_t N = 10000;
	srand((unsigned)time(NULL));
	RedBlackTree<int, int> t;
	for (size_t i = 0; i < N; ++i) {
		int x = rand();
		//cout << "insert:" << x << ":" << i << endl;
		t.insert(make_pair(x, i));
	}
	t.inorder();
	cout << t.IsBalance() << endl;

}
int main() 
{
	RBTreeTest();
	return 0;
}

五、红黑树与AVL树的比较

AVL树的平衡 (左右高度差不超过1) 相比,红黑树的平衡(没有一条路径会比其他路径长出两倍)并没有那么严格。所以两者在插入或删除相同数据时,红黑树需要旋转调整的次数更少,这使得红黑树的性能略高于AVL树。
可是AVL树更加平衡,查找数据所需的次数不是更加少吗?在AVL树与红黑树中进行数据的查找都十分快捷(譬如在查找100万数据中进行查找只需大概20次),对于CPU从时间上来说并不会造成什么负担。
总的来说,AVL树更适用于插入删除不频繁,只对查找要求较高的场景; 红黑树相较于AVL树更适应对插入、删除、查找要求都较高的场景,红黑树在实际中运用更加广泛。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注